LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco.

نویسندگان

  • Christin Anne Albus
  • Annabel Salinas
  • Olaf Czarnecki
  • Sabine Kahlau
  • Maxi Rothbart
  • Wolfram Thiele
  • Wolfgang Lein
  • Ralph Bock
  • Bernhard Grimm
  • Mark Aurel Schöttler
چکیده

Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions.

Mg protoporphyrin monomethylester (MgProtoME) cyclase catalyzes isocyclic ring formation to form divinyl protochlorophyllide. The CHL27 protein is part of the cyclase complex. Deficiency of CHL27 has been previously reported to compromise photosynthesis and nuclear gene expression. In a comprehensive analysis of different CHL27 antisense tobacco lines grown under different light conditions, the...

متن کامل

Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis.

In previous studies on Chlorella mutants, several compounds were isolated which were postulated to be intermediates in chlorophyll synthesis. Protoporphyrin-9 was identified as the main porphyrin product from one mutant (I), magnesium protoporphyrin was found in another mutant (a), and magnesium vinylpheoporphyrin a5 in a third (3). Here we report on the isolation and identification of magnesiu...

متن کامل

Conserved residues in Ycf54 are required for protochlorophyllide formation in Synechocystis sp. PCC 6803

Chlorophylls (Chls) are modified tetrapyrrole molecules, essential for photosynthesis. These pigments possess an isocyclic E ring formed by the Mg-protoporphyrin IX monomethylester cyclase (MgPME-cyclase). We assessed the in vivo effects of altering seven highly conserved residues within Ycf54, which is required for MgPME-cyclase activity in the cyanobacterium SynechocystisSynechocystis strains...

متن کامل

Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.)

Magnesium-protoporphyrin IX monomethyl ester cyclase (MPEC) catalyzes the conversion of MPME to divinyl protochlorophyllide (DVpchlide). This is an essential enzyme during chlorophyll (Chl) biosynthesis but details of its function in rice are still lacking. Here, we identified a novel rice mutant yellow-leaf 1 (yl-1), which showed decreased Chl accumulation, abnormal chloroplast ultrastructure ...

متن کامل

Effects of Iron and Oxygen on Chlorophyll Biosynthesis : I. IN VIVO OBSERVATIONS ON IRON AND OXYGEN-DEFICIENT PLANTS.

Corn (Zea mays, L.), bean (Phaseolus vulgaris L.), barley (Hordeum vulgare L.), spinach (Spinacia oleracea L.), and sugarbeet (Beta vulgaris L.) grown under iron deficiency, and Potamogeton pectinatus L, and Potamogeton nodosus Poir. grown under oxygen deficiency, contained less chlorophyll than the controls, but accumulated Mg-protoporphyrin IX and/or Mg-protoporphyrin IX monomethyl ester. No ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 160 4  شماره 

صفحات  -

تاریخ انتشار 2012